Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.164873611.11196104.v1

ABSTRACT

The SARS-CoV-2 variants raise concerns about the effectiveness of vaccines. Safe and effective vaccines are urgently needed to combat the COVID-19 pandemic. As a SARS-CoV-2 antigen target, ORF8 strongly inhibits the IFN-β and NF-κB-responsive promoter, which is a potential antigen target for the development of SARS-CoV-2 vaccine. Adjuvants or delivery system were necessitated to improve the immunogenicity of ORF8. CRM197 was a carrier protein with the ability to activate T helper cells for antigens. Eight-arm PEG could conjugate multiple antigen molecules in one entity with inherent adjuvant effect. In the present study, ORF8 was conjugated with CRM197 and 8-arm PEG, respectively. The cellular and humoral immune responses to the conjugates (ORF8-CRM and ORF8-PEG) were evaluated in the BALB/c mice. As compared with ORF8-CRM and ORF8 administrated with aluminum adjuvant (ORF8/AL), ORF8-PEG induced a higher ORF8-specific IgG titer (2.6x10), higher levels of cytokines (IFN-γ, TNF-α, IFN-β, and IL-5), stronger splenocyte proliferation. Thus, conjugation with 8-arm PEG was an effective method to improve the immune response to ORF8. Moreover, ORF8-PEG did not lead to apparent toxicity to the cardiac, liver and renal functions. ORF8-PEG was expected to act as an effective vaccine to provide the immune protection against SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL